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ABSTRACT

In this paper we use the theory of semigroups of operators

and fractional powers to provide an analytic factorization of
the sguare-root operator. We study the free-particle solutions
and construct a conserved current. In passing, we also provide
a direct representation for the photon equation and construct
its solutions. We apply our results to give a rigorous meaning
to the notion of proper-time as an operator, which in turn is

used to provide a complete particle interpretation of the

Klein-Gordon eguation.

*On leave from Department of Mathematics, Howard University,
Washington, D.C. 20059. :

Operated by Universities Research Association Inc. under contract with the United States Department of Energy



I. INTRODUCTION

Bistory

In the transition from non-relativistic to relativistic

guantum mechanies, the Hamiltonian

He .(ﬁ_sa/T‘llf .y a.0

is replaced by:

H --\[cz@ cefeRienit ey a.n

It was gquite natural to expect that the tirst cholce for a
relativistic wave equation would bes

H0x,0) = (Veied - o/edy? s i) + Vo) (D)
Whece B = - if¥. In the free particle case ve get:

1)\%%(3(,:) = (V-chi + 0% vGE,0) a.3

k)

In & survey article on relativisﬁxc wave equations, Poldyl

points out that in the absence of interaction, eguation {1.3)
gives 2 perfectly gqood pelativistic wave equation for the

description of & (spin zero) free particle. When K is not

teto, the non-commutativity of P with X appeared to make it
impoasible to give an unambiguous meaning to the radical
operatér. Ristorically, 5ch:bdinqe:,2 Gotdon,3 Klein? ana

others3 attempted to circumvent this problem by starting with

the relationship

M- 0? =l o P - efe A :4)

which lead to the Klein-Gordon equation. The problems with
this equation were so great, that all involved became

frustrated and it was dropped from secious consideration for a

few years. Dirac® argued that the proper equation should be

first order in both the space and time variables, in order to.
be a true rzelativistie wave equation. This lead to the
well-known Dirac equation.

In the ilmé paper that Dirac provided the basic ideaes
which lead to the Feynman lntegral,’ he noted that "the
Hamiltonian method is essentially non-relativistic in form,
since it marks out a particular time variable as the canonical
conjugate of the Hamiltonian function.®



pDirac's position, that the equation should be first order
in the space and time variables, emphasizes ths relativistic
invariance polnt of view in the merge of special relativity

with quantum mechanics. From the guantum mechamical point of

view, one could argue that a prover relativistic wave egquation

e ——

would elevate the time coordinate to the same level as the

space coordinate, in that both become operators. In the

relativistic quantum theory of present day, the time coordinate

does not have equal status with the space coordinate.

Purpose

This paper represents the first step {n showing that the
problen of the square-root operator, the question'ot time as an
operator and the inability to give a particle interpretation

‘for the Klein-Gorden equation are all deeply interrelated
i{ssues, whosa joint resolution provides a new approach te the
age old question of how best to bxzﬁg about the merge of
special relativity with guantym mechanics.

In the 19550's, mgthemnticianl,a while studying the
foundations of stochastic processes, discovered a method to
construct fractional powers of generators of semigroups of
operators, At that time it became po:aiﬁle to give an
unanbiguous meaning to the intecracting square-root cperator in
Bg. {1.2). In this paper, we restrict ouinolves to the free
pacticle case.

In Sec, II, we provide a brief ocutline of the main results
concerning semigroups of operators and fractional powers. In
Sec, III we use the results of Sec. II Eo obtain an analytic
factorization of the free-particle square-root operator. The
Eactotiz‘tion leads to an operator with many of the properties
expected of Lthe Yukawa potential, In Sec. IV, we construct
free-particle solutions, discuss Lorentz invariance and
consktruct a conserved current. In Sec. V we look at the
special case mvo which produces the photon equation, In
Sec. VI we bring together our previous results to give meaning
to proper-time as an operator., We use this cperator to provide
a barticle {nterpretation for the Klein-Gordon equation. In
the appendix we outline some properties of Bessel potentials
which atre used in the paper,

I1. SEMIGROUPS AND FRACTIONAL POWERS OF OPERATORS

This section provides a brief survey of the gendral theory
of strongly continuous semigroups of operators, which is in
turn used to explain the theory of fractiomal powers of
operators, The definitions and basic results are recorded here
for reference 30 as to make tha -article self-contained,
fosida' is the most general ceference, Butzer and Berens® has a
very nice intreoduction to semigroups and Tanabel® has a good

chapter on fractional powers,



pef 2.1 Let {T(t) | t 2 0] be a bounded family of linear
operators in a Banach epace X. This family is called a
strongly continucus semigroup of operators (also known as a
c,-umiqlzoup) if the following conditions are satisfied:

1) T+ s) = TOT(s) » T(HNT(W), Ye, s2 0, T(0) = 1

2) Hm T{t)u » T(s)u, Vue X
s .

12 the fanily is defined on (-», ®) then it is called a

Co-grovp, T(=t) = 2~1(¢). By further restriction, we obtain the
well=known 2efinition of a unitary group.

Theotem 2.1 Let (T{t) |t 2 0) be a T; - semigroup, let
D= {u lm hl{Tey - Iju exists}, Define AU = lin 2l - v foru e d;

then:
1) Dis dense in X
2) ueDw T(t)ueDforeacht 20

3 é [T(t)u] = A[T(t)u) = T(D)AU for we D. 2.1

Proefs (see Tanabe'? page 53)

Remack In the theory of semigroups, it's customary to
suppress all varfables except the time variables for example,
L€ we set u{0) = u and define u{t) = T(t)'u(0), then from (2.1)
we have: )

RO . puge),  uO) v (2.2)

Zq. (2.2) iz called the "Abstract initial value problem.” A is

called the semigroup generatar and we may write

T(t) » exp{ta} (2.3)

Theotem 2.2 The ganerator A of the semigroup {T(t) | t 2 o} is
a c’l.oud linear operator. If T{t} =< MeBE for fixed constants
M and g, then the half-plane mne(xbsl. is contained in the
resolvent set p(A) and for each such )\, we have: (Tanabe page
53)

o-0. i‘e'h'r(t)dt  RQ\, A 2.4)
: 0

R{7,A) is called the resolvent cperator of A and

HRO, A1 < MiRe(A) - 8171

Theoram 2.3 If the semigroup {T(t}{t > 0) s Cqs and for each

>0, T{¢)XcD: and, there exists a N>0 such that:

s}{AT(E}} s N for 02tx1



then the semigroup has a holomorphic extension {T(z)|zcd} where © Theogem

2.4 Let A ba the generator of the family {T(t)[t>0]

1 then:
A={z ] Re(z) >0, farg 2] < (N}

N .
1) A {Tc(t)ltzol is a holomorphic Cy-semigroup on X for
e2ch ac(0,1).

‘ 2) A, the generat T
In this case the family {T(t)]t20} is called a holomorphie a’ genezator of { °(t”t=°) is defined by
Cq-semigroup of operators. (See Butzer and serens? page 16). Ruu =-(-A)%, ueDand (2.78)
Introduce the function £ {8) defined by: (chidas page -
. t,a Ay e300t [ eel o0
2591 LU = ~— R(X, A)[-Auld) (2.7b)
arie 0
=1 !
f‘.“(k) m[ ) GXP(IA tz )dl, A 2. 0 (2.5)
238
=0 when Leg
whege t>0, 0<a<l and ¢>0, and the branch of 2% {5 taken so that .
a a .
Re{z%)>0 when Re(z)>0. The branch is a single valued function 3) Ry, Ac]u - ’—1:—"11 v R(, 21“ Adh ™ 2.8)
U - 2uA" cos an + A
in the complex z-plane cut along the negative real axis. The 0
convergence of the integral (2.5) isx 4insured by the factor .
exp{~tz%}, define ';"(t) byt -
-I-G(t]u - Ft “(S)T(SJH ds, t>0 (2.6) 4) I£ A is fnvertible then:
. ’
o -
=y t=0 -a; - sinar -
v A% s (A NS0T L o e A%
Whete {T(t) ]|t 2> 0} i3 a Cy-semigroup of operators on X, . e * AN (2.9

Proof: (see Yosida® page 260) 4) follows from 3) if u=Q,
Theorem 2.5 Suppose u ¢ D(A?) (A% exists) then:
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1) lalau-f\a,su.u,a>o,u°9<1
2) HeAuea
atl

" %) n iuu- -u (if 1im A R(A, AJu = O)
atd x40

0f particular interest to our work is the case a=1/2. !;ee
us deform the path of intagration In Eq. (2.5) into a ynion of
“two paths, re"}? wnen -r ¢ (-«, 0) and rel®, re(0,. ), whete
172 ¢ 8 £ %, Ve get: '

ft,llzm » ‘].Tg exp{sr cos 6 - trll 2 cos 8/2).
0
x sin (st sin 8 - wr¥/? sin (0/2) + Mr (2.10)
set & = ¥, (2,10) becomes:
‘ - .
fe 17209 * Hoexp(-sr) sin(s wM/4ar (2.1

Using a standazd table of LaPlace transforms, we have:

2
fan® T (2.1

11
111, SQUARE-ROOT OPERATOR EQUATION

1a this section, we apply the theory of fractional powers
to provide a direct analytical meaning to Eq. (1.3). Per now
we testrict ourselves to the free particle case, tha study of
interaction, brings in new effects and additional iesues, henca

will be taken up at a later date. In ocrder to compute:

BeLlv®] = (V-ci2a + '),

- get » = mc/H, wa may then write (3.1) as:

KoLy ()] = YelY-8 + *)9(X)
QL

.

L) = (V-2 + w2 (E).

Let A = 3-u?, so that (3.2) becomas:

LG = AV

He may now use equation (2.7) since a-w?

{semigzoup) solution to the (abstract} diffusion squations

(3.1)

(3.2)

(3.3)

ganezates a
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%‘é‘-- Au-wzu (3.4)
We have:
Ayt -lf dd Ry, O-AY (3.5)
) R O, D-A9) |

In otder to compute R{),A) we need the LaPlace teansform of the
fundamental solution to {3.4) (see BEq. (2.3)). This ie done in
'mny textbooks on partial differential squations (for example

treves, 1! page 41) the resvlt is:

+ ».2
2 T .M 1 {,zt_ X - 3 (3.6)
Plu, t, X - V) W-_;expu 'LLTFLLL
and
RO, AuE) - S et (%, 14t G.7
° “
vhere!
ax, ) - / P, ¢, % - Tl (3.8)
3

ﬁsinq (3.8) in (3.7) and inverting the order of integration

(e.g. Fubini’s theorem) we have:

13
-

RO, Au() = f 3“(9)&[ epl-at) P, ¢, % - F1de (3.9)
R [

The inner integral can be compute using a Laplace transform

table, ve get:

RO, M) + [ N ept-Va ¢ o? 1% - Fi) —=F (5.10)
®

d"
anfix - ¥l

We now use (3.10) in {3.5) and identify u(y) = -Ay(y) to gets

eV - ilr‘I 2. f (- VAo o 11X - FIl) —2—— ()] G
' o VA R anlfx - 7l

Invert the order of integration in (3,1l), we get:

a1 "‘ltf ‘—i"~ 2 I D oap-vh v JF- T VO (A2,
a3 1% - ¥l o-\/-l.
To compute the inner integral, set P~ ||% -3, 0% a) +u? s zeas
A -. \ng - “2’

the innec lntegral becomea:
I epl-pey 288 (3.13)
o e? . 2 .



L)

if we i{ntegrate by parts we have!

PS oxp(-P8) Ve - wPae (3.1
2

Compute (3.14) using a table of Laplace transforms, to get:

] eptefh o o |3 - 711 S 2IOA g )% - F1) (3.19)
0 W

¥here K, (2] is the modified Bessel function of tha third kind
of ordsr one. Putting (3.15) Into (3.12) we obtain:

AV - (;llz) 2ar(3/2), L} Ll -1 [, - VDG (3.18)
\4

VT Jgs NE-TN

Since I(3/2) = 34-1- , wa have:

: X, (w] l.i - ?I“ R
Liv] = =% Ao 1, - DT (3.17)
W=z L,; HZ - 711 & :

We note that A is invertible and:

F - T"_j\_ . | (3,18

1%
or we mxy use BEq. (2.9) directly to get that:
Xy ful [% - ¥1]1
-1/2 W 1 -
AV AR - / v (3.19)
P T T
We shall have use for this result in Seec. VI.

Returning to Eq. (3.17)'\0: may now Zurther refine our
result so that physical implications may be more cbvious,
define Glrul?c-;[} by:

Klal X - ¥10)
- - 1 1
llx-¥ll e =20 (3.20)
% l WllE 3]

G, is known as the Bessel potential of order one
(c.f. Aronszajn and smith!? or Donoghue!3). Let us note that
Ggl"'l’."ﬂl is defined in general by:
Kg.glel 1% - 7111
Gglal 1% = 7111 =~y Z r (3.21)
2 ¢ a¥re quilx- vl 2 ‘

§o that, in particular, Gy(w|X~¥{]1 i3 the well-known Yukava

potential (except for a factor). A more detailed discussion
»

will be given later, see alsc the appendix,
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16
Using {3.20) in (3.18) we get: )
2 \ vhere f %‘f.,- « %x ¢, ds is the surface area element of the ball,
L} = - ‘3,] Sl % - Ty - oW1 (3.2)  gyuptsmods do, 0461, 0¢gm,dse pidn
b
2 . .
-- '4';[ GullE-FIN o vF @ ¥ " cos ¢ sin B
r’ vy * sin ¢ sin ©
. )
% f Sl - Filvth an (3.23)  vymcos o
)

We want to integrates

tn order to trcansform (I) above, let us construct a small ball

of radius p about %, Bp(‘:‘q 'a.('fgn}l 1%-%|<p} on thie dall, ¥ - @) 6, [wo] "uﬁ + Polds
$47ip, vhera § = =3 and ¥ is the inward normal (so that ii is ‘the fui=1
outward nocmal). We now have: and
s 3 - - f G fon],, V(X + lio)ds
Lsﬁltullx - Y“]Ay v(y)dy -fm-"\n . Gy [wllx - Y”]ﬂy vy @) Jipte
63
*f LGy Wl % - Fl1)a, vGHey (3.24)
Bp(")sl R4 Por (i) we have: (in the limit as p}0)
- 3 i n
f - 6,lue) ¥, 0% + Tolds < Gluple® T I ] e vyl *(3.26)
, rigs e e
: 2n
l 1
Let us now apply Green's theoreum to get: v Glluolnz ( % I I . cos 0 sinza P
. ) . 0°0
6, ful 1% - 7|11 W’)*'f % .5 ¥ o
LS\B o Tl v ) &)%[wu G . . #S - sin ¢ sinTodbdo
¢ ? *2)4 Jo

. .7
. !; (;)rclruui- Fe,@dy - G lellF - FilD, vl (3.29) ,?3- to go - cos 8 sinededs) (3.27)
p .
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Zach integral in (3.27) {& zero, mince
2 1
lim p° G, [wb] =
p40 1 ;‘l
{see the appendix) we see that (i) gives a =zero conteibution.

In order to computs (i), note that on |u|=l, (G, twp)), =
'*(Gltuonp-md/d(wp) Gylwol set r = wp so that (G fwel),

becomes
o 6,
{1{) reduces to:
» a6 Ir] 2 > >
f G leeD), ¥ + Tdes = v o —— ) [ ¥G + S
V=3 @ -

By Taylor's theorem,

: 3
W&+ To) 9@ ¢ L o ’%ﬂx o By (s, %)

vhece R, (U, 3)/11¥0]1 + 0, 0 4 0

Usiag this in (3.28a), we have:

o N 2
J.rl (G tood),, ¥(E ¢ Todds = + T (6 1] vy san
u|=1

3
ay N
+ DjEI I llj 5;; : dn + / R‘l[pp, x}dq)

In the limit we have:

2
> o - 3 T '
:?a. m-ltcl[wl)u Vx4 ua).ds - :3:3 + l4mv(x) - (Gy1r))']

We show in the appendix that

93(3'] 2 Gl[r]
T =T

G ] = -

19

{3.28)

(3.29)



;nd that r 63[:160, t40 while ¢ 61(:] becomes divargent (this
also follows from the result after Eq.(3.27)). This means that
Bq. {3.28) is singulaz at r=0. In order to see why this term
is needed, lat us compute '

_[R & Gls 1R -3 v

8ince (appendix) (I-4) Gg = Gy, we have:

8 Gylo 1% - §)11 « a6y fo |1 - F11 - 6y 1% - 51D (3.30)

6 Lo 1% - J111 » 26, (o 11 - 7111
ot 1% - FI |

G0 [E-F1)=- [ (.31

puteing (3.31) and {3.30) {nto the integral, we get:

201 gl . 2 * >
fm Al LF ST vGE - jz; Gl [F - 71 v

Gl |1% - F111 * 26, [w 11% - F)1)
|l
3

e v(y)dy -(3.32)
1% - #11¢ -

21

Tt is not hard to see that the last term in EBq. (3.22) is

divergent at x=y. Returning to Eq. (3.28) we may write it as:

_‘,f Gylol 1% - 111 « 26,(w 11X - 11}

— S - ) vy (3.35)
® 1% - 7}

Using (3.5} to acquitre a {-1) factor which changes the sign of
{3.33), combining with {3.32) we have:

LGl 15 - Fi1iey v6hdf = [ Gyt 113 - 111 w61
R R .

‘[ {Gg[w) [X - 7|11 + 26, (w] 1% - 7|12} 1
® VX - ¥l % - %11

- X - D - 8.4

Returning to ({3.23), we see that:

- 8% - P
(3.35)

2 Gyl RPN ¢ Wy KT,
L) = - ¢ 2 — O
7 /m! {1x - #il 1x - ¥il

EQ. (1.3) may now be written as:

6.0 = - [ ot 1IE - 9111 46, 05 R
' R
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Where the kernal G {3 given byt

. 2 fG.fw |1 - F111 * 26,0 1% - F11)
G[ulli-ylll-Ei‘—{z' ”;';”61

x [ N SPTT ) (3.37)
R IERE T

Discyssion

Feors 2q, (3.21) and the results of the appendix, it Iis
easy to see that:

_2 *_32 a r ¥ {'nl !;" } .3'38
shr Gyl IfE - 711 = 6° S .30

This of course is the well-known Yukawald potential, proposed
in 1935 in order to acecount for the short range of the nuclear
interaction which wss then conjectured to be mediated by"
sassaive particles (mesons), Where g represents the "charge®
of the exchange £field, Yukawa assumed that the range of the

. intecaction was 1/w = 1.4 fermi which lead to a mass value of

23

about 270 times that of the eleciron. In 1936, Anderson and
Neddermeyerls discovered what was believed to be Yukawa's meson
with a mass of 207 times that of the electron. This particle
interacted 30 weakly with nuclei and had such a long lifekime,
it was' rejected as a participant in the nuclear interaction.
1n 1947, the 7-neson (pion) was tdentified and it had all the
expected properties,

It is helpful at this point to directly review (3.35) in
terms of the DBessel kernals R,a(2] and nl(zlfz. The spherical
symuetry means that the effective kernal in (3.35) is:

.(assuning ¥H

8ylo 1% - ¥111 + 261w {1% - F(11,

using (3.21) we get that the effective kernal is:

1 % - F11 + -1 w (3.39)
P TN
We follow Donoghue;l? for 0<z<<l (appendix)
(z] .
57_- URLU (2.40)
_ Kolz) = ¢1 + 6y (a))10g 27t
wheze 91(21+0. 2+0, For 2>>1,
Ky (2] .
st ¢ g ThE
(3.41)

Kotz = ¢ {2 + 8,21 ﬂ;’;}#
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In particular, we note that for 3 clase to zero;

‘1?1.. > 22lal , x () (3.42)

in the sense of strength of singularity, The K, (21 singularity
is the weakest possible at z=0, in that:

Un 2 Kyfz] =0, >0 : (3.43)
40 ; .

On the other hand, for 2 large, the inegqualiey (3.42) is
reversed so that: (see (3.41))

X
Kylz) > 22l _gi_’}_ (.48

u-gnq the constant -02/2 from (3.35) in (3.39) we get:

o w 1
’—z‘ w ||X - - et (3.45)
p xot ” Y”l '2"'2 “.; R .‘”

The coefficient of the Ky term has an additional factor of ©¥/2;
asauming ot ) this gives a value of '5*1013cn'1. We may thus

23

draw the following conclusions concerning the coperator L{¢)} 4n
2q. (3.35)3

1) L { ) acts like & short range potential (nonlocal)
with affective range )/mc where m {s the given mass of
the spin zerc particle; two parts are attractive and
one part is hard core repulsives.

3) The G,{z) term has a very weak (ln 1/z) singularity at
2=0, while the Gllzl term has a very strong (z'z)
singularity at z=0. The Yukawa‘sinqula:ity 13 z™hH
between (halfway) them.

3} Although both terms are short-range, the Gz(z] term
has 2 slightly longer range compared to both the Gl{z]
and the Yukaws term. In addition, the coefficient of
the Gstz] term is larger than that of the Gllzl term
by at least a factor of 207,

4) L | ] looks like the 2ero operator outaide a few (=3)
Compton wavelengths. This follows from a graph of the
63[:] term. '

In 1) we have noted that L [ | acts "like"d short range
attractive potential. This i3 certainly a new aspect which
occurs because of the confluence of special relativity and
quantunm mechanics. It is very inkteresting that there are three
pacts. We are accustomed to think thai free relativistic
particles havée kinetic and rest ensrgies but never having an
*intrinsic" potential energy. Related ideas on this subject

were discussed by B:gllou1n17 in the classical case, and lead
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him to conclude that it was incorrect to assume that the total

energy {relativistic) could always be written as the sum of the

kinetic plus potential. 1In a simpi- analysis of two

he showed how additional mass
Qccurred because of the potential energy.

intezacting charged apheres,

1v, FREE-PARTICLE SOLUTIONS

We may use Eg. {2.12) to construct explicit solutions to
(3.36). In order to keep the units correct, we must replace t
by ct so that (2.12) becomes:

2.2

- St 32 et
b2 = g o et S0
Let us note that had we kept L{¥}
J-e§n2A+nzc‘, this change would not be cequired.

in (2.6), ve gets

in the form, L{y], =

fl,ztg)vc?‘)-j’ =<3 expt- & )‘r(sJ v(?:)

Where, as in (4.2), T(s)v(k) is defined by:

T(s) v(X) '.fsm(- w's - 1 vy —“—a)ﬁn-
R s

Combining (4.3) with (4.2}, we obtains

Using (4.2}

4.3)

4.2)

(4.3

27
From any table of Laplace transforms, we get that:

»
J’ o e .4_' - 200/a) Kylatamy ) (4.5)
)

With:

]
.- L et p.uf,

we can interchange the order of integration to get:

« W xztu'\/l I - ;n’ + &)

p 3 - i ¥y (4.6
‘l'uz(:) v(x) L’ (4")1 ”; ,“ Pt t

70 put {4.6) in a more appropriate form, we note that
' %, (z
Ryls] = Xyl2) +

1 4 [:l
Galll .ds ‘ohlo 61['] b T —?—

80 that

2 + gzgz + 26 [ "‘ - ’” + czcz)]

T

illz(:] v(®) = sctw

zI G.’[u H;-;l
.m:

x v(¥)dy “.n
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We now use the fact that illz(t) has a holomorphic extension inte the complex
plane so that we may replace t by it in (4.7). .Setting U(t) = -‘,_‘-1/2(1:). identify-
ing $(7, 0) with v(¥) leads to:

& 0 =uww & 0

G. 2 » .J—ﬁi
'(‘icm)L st /1% - F11 - Pe?) o sty 1R - FUIP -

-C
HE - 711° - e

. (4.8)
To cwpute the inuzral in (4.8), we must replace l§ - ;'2 - cztz by

% - FI? - <*t? + 1e, aftervand, let ¢ + 0; with this understanding, ¢ is oniteed.

The representation (4.3) of w(x. t), makes it clear that whatever the initial
statp w(?:, 0), the vave packet spreads instantanecusly over all space at'any later
time. This result implies a conflict with (Einstein) causslity since the speed
of propagation is instantaneous; of course the measursble effscts aze in a region
_of & fow fermd due to the mass cutoff,

It has been shown by Hegerfeldtm and Ruijsenaars, that this problem is
quite widespread, however, their methods do not spply in general to equations
which are not bounded below in energy, as in the case of the Kiein-Gordon and the
Dirac equations. Equation (4.8) is & solution to the Klein-Gordon equation vhich
does violate causality, This is quite interesting since signal prupagation still
eccurs with velocity bounded above by the speed of light, This apparent contra-
diction clesrly indicates the need for additiona:l: study, '

T2 = (¥, 0)dy
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Let us recall that the Poldy—'ﬂouthuyunl’ transformatien
i3 a unitacy opecator which crelates solutions of the Dirac
equation to those of the square-root equation, .This of course
means that the Dirac equation is unltarily equivalent to a
causality violating solution,

The question of Lorentz invariance of the square-root
operator equation has been discussed by many writers, Sucher20
tas shown that the axpected behavior under the action of the

Lorentz group, namely:
5;! st . X : (4.9

yhtch holds if K is the Dirac or Klein-Gordon operator, does
not hold if

e b 2 Vehls + ntct (4.10)

In this case, X i3 shown to be {nvariant but undet the more:

general conditions

s;lxs, - X (4.11)

Wheze J is not the idantity operator,
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We cloze this section with the construction of a conserved
curzent density, We remactk that iu - -(-A)“, ac(0,1) is
wssentially melf-adjoint if =A is self-adjoint (see Katodly,
This means that ;\ has a unique self-adjoint closure, Set H =
/6?5224, aefine a linear form on {L2(R%1, {, )} (denoted <,
») bys

w, o = (%, 1/, 14.12)

The sslf-adjoint property implies that:

<, 8> = (HY, 4) A 4.13)

It is now easy to show that the linear manifold generated by
solutions (4.8), with the inner <, > is a pre-Rilbect space.
define o (%) by:

o6 = Ly W/t *.20)

o /20 01/2
-;zfﬂ ¥} (%)

‘We then have thats
- & . /2 /25
T 30(3") -a:z f (Hl W)(H‘

f s B0 ¢ o/ lnel? e
R
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f 3[(5’“1%) oy - /et ’nﬁn&}
R

. ;;-,; [ [ 3tm’m . ¢-cu2an&] (4.15)
' R

In {4.15) wa have used the self-adjoint propecty; simplifying

we get:
a ™ - l“ © - U % - i‘“— » t - ¥ ™ .
® Lsodx = Lscw widx = o fm 33 (¥ - ofildx (4.16) ’

It is clear that (4.16) will be zero by use of the divergence
theorem and the fact that the functions ¥ vanish at infiniey.

We thus have a conserved current four-vector defined by:

o v (/%2 3 = Pdoy - wi *.17)

It should be noted that our definition does not 4differ much
from the one in Schweber2? (page 57).

V. TEE PHOTON EQUATION

In this section, we consider the special case, w=0, this
corresponds to the photon equation Ln case V(%,t) is a three
c¢omponent vector valued function. It is normal to also imposa

the subsidlary constraint (gauge) condition:

Fevao (s.1)
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The method of limits is quite complicated and tediousy {t
is sasier to compute both the square-root operator and the
solution generator directly, TPTirst, we use g, (3.6) with uw=g
in Eq. {3.10) to get:

. © > *12
RO, Au(X) -f uP ’Ie {-t) exp{. LX oyl _dt .2
n@ dy o’P o Lszedl- E;;sgrz (5.2)
o [ ot yT IR - Finwp —E (5.3
3 4r |Ix - ¥
We now use (5.3) in (3.5)_ to gets
V2 a1 (" B rn nees :
al™% A'LW (A, 2)(-4¢9) (5.4)

-
Using the fact that: I
¢

_d_l_ {~af2 X-5 ).—-—_2
vt LRI LRy

(3.4} becomes:
(812 ;’i ]' ——"7—1 & v (5.9)

8 Q= .-—_.._...
et ;;z”, 7 QUHE - 113 {5.6
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Construct a sphere of radius p about %, 30 that: ¥ = %-3p =
iﬁ'lp whcuﬁ = =% is the ocutward normal on the sphere, We may
now use Green's theotem to get:
. L Q- 14, 96HEF = lim ¢ -8 Qlf - v G)F
3 pel 3
R\B, (R)
- ds} 5.
j;a mr(q-o‘,) @, W | 6.7
' Now
‘byQ[I -y - :};—:“1——1 (5.8)
* |fx - A
and
QE-Fl= -QE-F1e-JE-F 6
since Q0F - 71 = Q(), ve have:
Q- = ey . (5.10)
st fx .yl

It is sasy to see that the other surface integral in (5.7} is
3420 a8 in Sec. 1V, combining we hava:
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] (5.11)

- [ F - 718, ¥G)65 = un ¢ G, e
fm”. Y o0 e, R FIT IR

We may rewrite (5.11) as: (using (5.5)1

1

/2
(-3] [
B 1E- 507 ||x-yu

vG) = - —z

-4 &8 - N (5.12)

We note for later referance thats

-1/2 (‘ +] !!:zlﬁ
« wix) = S,
[ ] ) -2‘2' f 3 “.. . 9” (5.13)

The photon equation becomes:

‘ 3y _ -He 1 1 - - .
b3 A g - & - VW 5,14
¥ L W G19

Feopeo
("l'o‘ compute the genezal solution to (5.14), we

use’
:zi. (4.1) and (3.6} with w=0, to obtain:

. S . 2
B/2(VE) = -ﬁz-j & I i E-ate ey s iy
WU lgs” g3

Integrate by pacts twlc. with usw= !‘— dv = 93 £72/3, 10 get:

.

fyave) « L2060, f ‘———gﬂgrn .16)
{4x) P

UIX - 711° ¢ c“t9

as
Dsing the fact that '31/1(&) has a holomorphic extension we
havet
iet vy, Olc_lL

@ 1) » Ut v(E, 0) = lin j . (5.17)
¥ SR R TN TTL L :
A sinple computation shows that the gauge condition Vey(%,t) =
0, becomes:

im -4ict] % - ¥+ w(¥, 0 (5.18)

0 3% - ¥11° - c“t *i: :

Zquations (§.17) and (5.18) provide an alternate (and direct)
appioach to the physical interpretation of the Photon equation.
(Cf Schweber?? page 116).



36
Vi. PROPER-TIME AND THE KLEIN-GORDON PROBLEM

If one attempts to implement the successful procedures and
methods of non-grelativistic quantum mechanies with the special
theoty - of relativity, it is well-known that problems of
physical interpretation  appear. In the case of the
Klein-Gordon eguation, the inability to give mathematical
meaning to the squate-roét operator forced the use of the
agquaze of the physical energy as a loglcal substitute. This
meant that a fundamental deviation had been made from the known
methodology since a priori, there was no way of knowing if the
standard rules of quantization applied in this case, 1In order
to maintain the standard rules, the concept of a quantum
mechanical particle with a meaningful probability density had
to be gbandoned. The problems are well-known, and discussed by

many writers.23

In a diffexent digection, in non-gelativistic quantum

mechanics, the space coordinate bhecomes an operator, while the
time maintains its status as a parameter, A fundamental
assumption of crelativistic quantum theory is that space and
time should have an egual status, It is clear that this does

not .occur, in that the time 'variable does not become an

operator when relativity and quantum mechanics are mecged,’

This may lead to some problems of an internal consistency
nature, but at present things are not eclear, In ordar to
clearly sse one apparent problem, let us note that the three

fundamental relationships of classical special relativity:

37
%:_ - ;6 . vz/cz
2
E= —-L.E—
(6.1)
Vi - vz/cz
Ew ch'ﬁz * mzc" .
may be combined uniquely to give:
dr lﬁcz
3 . {6.2
r.ze + nzc‘ )

If we now make the transition to quantum mechanics, (b+ L)%y
we obtaint

de mz

Tt 6.3
N pev ) (6.3

This result i3 consistent _with

guantum mechanics but
Lo treat pecoper~time as a
Patameter (moving along the world line of the particle). 1In

Inconsistent with the many attempta?3

this pacticular case we may integrate (6.3) to cbtains

£ 2
X, t) -j Gorae = Bt
0

(6.4
Vs » it )

Prom EQ. (3.19) we see that T(%,t) may Dbe explicitly
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represented by: We are now in a position vo show that it is possible to

2 (o ”; . 'ﬂ” give a unambiguous particle interpretation for the Klein-Gorden
1, ¢ y(X) « 22T 4 ey 6.5}
’ ()ic)hr‘ mz ”; R ﬂl . equation, but first it is necessary to show that it is possible
_uzt Kjlw [x - ¥I1) F 6.6) to give meaning to %the symbol 3/3v. Let us note that as an
ey [ms Hz - ¥ ) operator, the following expression is well defined:

"As an operator, we ses that t(%X,t) is non-local, however, we

-
know that Kllwli*;ll i8 zero outside a few Compton wavelengths, g%g%- - % f Glw 1% - ¥{1) —aﬂﬂ-gd? (6.11)
: 3
Prom Eq. (6.6) we see that the appropriate definition of ®
dri%X,t) for the free particle casa im:
. S ¥e therefore define 3/31 by:
W&, 1) . dt (X, ¢t -
2 fa 1% - 711 . -L@—l- g t) (6.12)
a@ v o, p-ofp BRIV L s B! : R .

o g IR-T
Using Bq. (3.20) we may write (6.7) as

Let us now suppose that (%,t) is a solution to Bgq. (1.3)
20 ghata

ma‘gg;xt, 9. (.\/:2);_3:—._;2:‘) WX, ©

2.
&, 9 o&, v = S f s Gl 1R - Pl VG, 0F 6.8)
N IR

It 1is clear that dt/dt is a self-adjoint, bounded and

invertible oparator, its inverse 4t/dt is eaxily seen to be:

Opezating on both sides with dt/dt, we have:

2,2 2.4
B, € u%*_'n_c_).w(; 1) (6.13)

€ v&. 0 = (= Nlx, 9 = F106, 0] .9

b+ g
Using (3.35) and (3.36) we have:

@ ok, 0 - jmss(w I - $I1) ¥6, 0 (6.10)
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It we now note that in this case dt/dy and 3/3t commute 30 that new correctly view antiparticles as particles moving backward

from (6.12) we have: {n proper time, Thus, in #ddition to a physical justification

o, :3-[35&} . 3[ " | = ik 3{31'] . ik ig .10 for the Klein-Gordon equation, we may now interpret it as a

LR L -n?,ﬁﬁ et 3t ) true, particle eguation. In order to see this, note that
'r.ip(;’d; 18 a constant function in the space vagiable so that:

combining with Eq. (§.13) we haves - Lsp&)di <2 fmso&)&' (6.17)

can be replaced by

2.2, 22, .24
[¢1))] ?__%.!C”ﬂ n'c )}y (6.15)

n t me

This 1is clearly the Klein-Gordon eguation; we thus see that in

the free-particle case, we may viev the Klein-Cordon equation This {s so because by {3.32) and (3.23} we have: (lal is any

as an alternate representation for (6,13}, Let us cewrite

constant) note Ay[nj =)
(6.13) a=:

]
ot Fta) -"—’;I Sale Vi - vl el (6.18)
“;% - ;z'? 6.16) , i)

fe now use the fact that Lebesgue measure 1is translation

In this form, we see that if we define the proper enecrgy X = ipvariant which allows- us to replace &} by d(k-%) in (6.18).

ﬂ:/mcz. then K is never negative. If we replace R by ~H, it Is It {5 shown in Aronszajn and Smith that:

clear from (6,12) that the operator dt/dt changes sign. We may G lz]dz » 1 (6.19)
z]dz » . .
jm’ 8

30 that {6.13) becomes:

3
§a) = %fa) (6.20
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This means that Eq. (6.17) bccomés:

. k] i u’ k) o,
) f oG = & 2 f o)k 6.2
= r°

Thus, we may intecrpret (6.16) as a true particle eguation with
pi%) and J as defined in (4.17). If we want the ant{~particle
evolution, we replace 3/3t by -3/8t in (6.16).

* The question of interaction reguires additional study and
w#ill be the subject of future work, The question of
genecality, at lsast in the free particle case, can be
dispensed with in the affirmative. In order to see this, let

us note that we may rewrite Eg, (6.3) as:

2
&, o
T }'l-{m (6.22)

Whete R[B,mc?] is now used to denote the relativistic
Banlltonian for a free particle of acbitrary spin. The
explicit representation for any integer spin is easy to ecompute:
iuti.ng- {6.5).  The explicit representation for half-integer spin

can be computed and is much easier,
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We pause to compute dt/dtr when H iz the Ffree pacrticle
Dicae Hamiltonian. We do not need it for the purposes of this
paper; we present it for completeness. In this case (6.22)

becomes:

3{- . — (6.23)

If we multiply by

ve ‘gets

de . - b e mch ’
a% _—5'2—27—'“ ‘(6.24)

Let us now note that:

S 1
P )ich[-A v o)

From EqQs. (2.3} and (3.11), we see that:

1 %) = 2‘ %) » { - ‘-’}-——m—. 6.26
(@ = K, @ o [ et (1 - FI S 20

R
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Using this in (6.24) and simplifying, we have:
G - [ (-5 9+ byl LB - 1) 6y 6.2
® W Y E - i

It shoyld be noted that the operator in Bg. (6.27) only actsz on
the enclosed expression and not on ¥(¥). If we integrate by
parts, it is easy to check that (6.27) can also be written as:

Ty 42 w expl-w 1% - F11} -
35 b - [ et XAl . 3« i (6.28)
. w ms lIx - ¥l Y

This also follows from the commutativity of the two operators
that make up (6,24, '

' It is clear that (d1/dt) is also an invertible operator
with an unbounded inverse so that the class of Euﬁettons on

which the inverse acts must be restricted:

- j_ﬁ_-_?_;ﬁ)_ 6.29)

"

%

Returning to {6.22) in the general case, we sea that:

2

é - 'ﬂr;‘"frl (6.30)

As in (6.12) we define
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3, dt 3y
TR (6.31)

and once again we get that:

2, , 2.4 .
2 . (-cz):: + miehy (6.32)

We now gea that there {s a distinct difference between the
proper tinme operators in the integer and half-integer spin
cases, and yet the form of the free particle equation is the
same.

.In the half-integer spin case, we once agaln may use the
standard peobability density function, in particular, for a
Dirac particle, we have:

->

= p[;)d;-u——-z-'?%f p(i)d‘x’#ﬁa%f s (6,33
ms ne ms !R3 .

As the above integral is constant in the space variable, the
first term on the right of (6.33) iz zero so that:

3 - 3 -
& f & (6.34)
ﬁ/l;sn(i) Eﬁ msﬂ(x)

We thus see that we need not change the probability denality

function or the current density for a half-integer spin
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paricle. As in the integer spin case, we have a true particle We also have that:
eguation, with no need :o deal with the concept of negative
snerqy and 1lts interpretive difficulties. Hdt 2 lzzdr - ’ (6,39)

We close in showing that our approach is no more than a e

strict adherence to standard canonical transformation theory. .
Pirst let us consider the classical case; returning to FTor a clear presentation of canonical transfozmation theory, we
Bqs. {6.1) and (6.2), we ses that we may write: cefer to Acnola?t (page 241). See also Abraham and Ma:sden.zs

In particular we have that for a general change from
dr -mzlt 6.35) obsesvables (R, B, X, t) to observables (R, ¥, X, T)., Arnold
shows that the new Lagrangian is related to the old one by:

vnere B » /02324n%e*, starting with the standard Lagrangian: Pok-Hae=F.X-Ffar+ds . (6.40)

- et .
Weep - & - Hie (6.36) whete & = s(¥, %, T) is a function to be determined, and is
sometimes called the genezator of the canonical transtormation
Wa rewrite the left hand side using (6.35) as: of variables. 1In our case, we see that 320, P =P X = X, 7

= B3/me? and T = 1. We 3es from the above, that our theory

P& HZ mz p' Y "z belongs ta a subgroup of the canonical t:anstcrﬁat’ion group,
gtz ? - —z{-n-dt P dx- —2d1 6.3
e ) |3 ( 7)- the so called contact group; that is, all canonical

teansformations such that:

That is: (we use ¥ to indicate identity) $.8-3.8 (6.41)
(i%’é-mzs@%-{zm ,

Lat & Lde (6.3%) {See Sudazshan and Hukunda“. page 47, In our case this is an

{dentity. 1t follows that Hzlmz and Tt are canonical
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variables, so that we may invoke quantization via the standard

rules to obtain:

2
%, H
ingk = o (6.42)

This approach is quite genersl, however it gives no insight
into the mathematical meaning that one may attribute to the

symbol: 3/3t; and that explains the more concrete appreach we

‘uged to derive Egs. (6.13) and (6.32), The approach via

canonfcal quantization also dces not tell us that the symbol
3/2r has a different meaning for integer ven:s half-integer
spin pacticlea,

We have given meaning te¢ 3/3r, however no meaning has been
given for the aymbol d&/dr, .ou: approach to a rigorous
definitlion of d/dr is related to attempts to account directly

for extended particles and/or particles acting under forcas

that are not necessarily decivable from a potcntul'.z" Let A be.

any quantum mechanical operator, define da/dr by:

% . ﬁ‘(xm - HTA) + 33 {6.43)
Wheze T -ﬁz and g%- %:’%At' » We may also write

{6.43) as:

dA, 1, HE, %A
ﬁ-ﬂtmm—;}*,—,
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We choose to use the operator T {n order to point ocut that our
theoty is a particular Lie-isotopic generalization of the
Heisenberg equations which automatically preserves known

resglts, (Cf Santilli“). To see the connection, write

[A, H)* = ATH - HTA

That is, we may view our approach as inducing a new Reisenberg
bracket via a change in the definition of multiplication in the

underlying Lie Algebra; where:

-

A'B = AB + ATB = A'B

A,B in the algebra of observables, This implies a
generalization of the FHeisenberg uncectainty relations and
other well=-known result‘s and principals of quantum mechanics.
(L., SAGB = <if[A,B]*> etc.) In closing, note that if A
commytes with H, then da\)dt = 3A/0T.
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CONCLUSION

In this paper, we have sttempted to connect a rumber of
sppacently unrelated issues in the foundations of relativistic
guantyn theory, Many of the topics and approaches touched upon
zould themselves be the subject of in-depth study, and the
study of sach will a part of the overall long~range program;
however, there are a-  number of {mportant shoct-range issues
that must be addressed.

from a physical point of view, the first question is
interactiom:

, 1) How do we define the square root operator in case- we
inteoduce minimal coupling.

2) Row do we compute the sSquarze oot operator with
interaction.

3) ©Doas the probadility density remaln positive definite

" fior _the square-root operator Eg. {l.3) during

interaction. .

4y Does_the genecalized Eq. (6.32) retain a positive
definite probability denzity during interaction,

! 8) wWhat {s the cocrrect definition of the proper time

during interaction.

6) FHow does one approach the theory when there is moze’

than one particle.

Questions 1) and 2) are mathematical &u-sticns of fundamental

importance from a physical peint of viewy questions 3) through
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6] are completely physical in .natu:e and must be answeted
before any claihs for a trua generalization of relativistie
quantum theory can be made. ‘

Let us note that the question of invariance under group
transformations has not been included because a 1little
ceflection reveals that except for translation, gauge group and
0{3) invarfiance, apparently no other gtoupsl appear. In
particular, the question of Lotentz invariance does not seem to
snter Into our approach. Since the proper frame is unique,
Lorentz invariance becomes an improper question. This leads to
a question of uniquenesa which requires a detailed classical
analysis. If {for whatever reason) one Iinsists on Lorentz
;nvn:llnce. then it becomes necessary to define transformations
on an operator valued metric.

There is one question of a mathematical nature that should
be discussed, namely, how does one analyze equatfions with
unbounded opezstor valued coefficients. That is, equations

{abstract) of the form
AOBE. .« 3 - £(0) ®

Whace A(t) and B(t) are operators (unbounded in general), £(t)
‘s some given function (abstract} -and U(t) is to be found
subject to .ghc appropriate initial data and boundary
conditlons, 1If we let A(t) = i) dt/dt, B(t) = -H2/me? and f£(t)
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= 0, we obtain (6.32). We are in luck since at lsast as early

as 1957, the more general problem:
2
A :E‘ + 38+ cyuee) - 1) ®

has been the subject of mathematical inguiry.- Questions of
existence of solutions, uniqueness, continucus dependence on
"{nitial data, and approximation procedures have all been
studied within the Hilbert space setting. Thosw with interest
in this question are referred to the report by bions,??
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APPENDIX
BESSEL FUNCTIONS AND POTENTIALS

In this appendix we present some well-known as well asg
aome not so welleknown results about Bessel functions. We use

these reasults to prove some statements and derive some formulas

used in Sections 1IX and IV.

Let xﬂhl ‘be the modified Bessel function of the third

kind of order 8. The following results are derived in
Donoghue:13

Theorem 1

1) If 0<8<3 then

8 Kyl2) = %g&ﬂ 2+ 0 . (Aa)

B Kylz} v {1 o)) dog 3, 240 (A2
8(z) +0 as z2+0

2) If z+» then

-z
Kglz] = ;;_—;(1 + 0(2)
T

8(z) -~ 0, 2o
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Theoren 2

I T IR G S & g )

2) K_glz) = XKglz] and Xglz] {5 an entize analytic
function everywhere except at 2+0,

Theorem 3

1 Ky l) - Ky (2 = SEEE () w9
=24 -
3 xg.llz] + Ks...ltﬂ - a’ixatz, (M)

3) K‘[z] - PG'%T)’(%)BI exp{-z cosh t} (sinh t)”dt. Re(z) > 0 (A7)
0

The proof of theorem 2 4s in Aronazajn and Smith, 12 4p48 the
preof of theorem 3 may ba found in Magnus and Oberhettingn.”-
Using (A7) it is easy to see that

%1213 '\/; i/—:- (a8)

50 that:

o
"5{5" .

(1]
From {(Al), (A2) we see that:
lin 2% (2] « ln{2 - 82)] = 1 . )
240 240
Un 2 Kofz] = 0 (A0
0

We now follow Aronszajn and Smhhlz in defining a Beasel
potential Galzl of order § by:

K3.g 2]
1 .
G = ALY
Theorem 4
1 j Gydz = Y25 @ =1 w2)
® .
wherce G, means Pourier transform. ’
2 §@ = @Y L)
" Theoram 5
1) G,lz] * Gglz] = G,,pl2] (A14)
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Wheze * denotes convolutian.
2) (T -8) Gglz) = 6,02 (as)

Proofs of theorems ¢ and 5 may be found in Aronszajn and
smith,12 (A15) shows that G,lz) satisfies: (I-2) Gylz) = 6(s),
it is easy to see that G,[z] is the scaled Yukawa potentisl
(A8) (m=l), It is easy to show using (A9) and (Al0} that:

s 2 1
Lim 0“6, (o] =
ptd 1 ;T

(a16)
lim pGyfwo] = 0
p+0
From (AG6) we have:
G, (1) 26,(v) -
BG0D - - (- 30 )
and from {AS) we see that: .
Ky(z] Gylz) + 26;(2) .
- = - {: } A18)
Gl = o A (

Where we have used (AS) to expand Kz[g], the negative sign

.

appears because of P (~1/2).

2.
3.
4.
5.a
5.b

5.¢

7.

8.0
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